Ion-specific oil repellency of polyelectrolyte multilayers in water: molecular insights into the hydrophilicity of charged surfaces.

نویسندگان

  • Xiaokong Liu
  • Chuan Leng
  • Li Yu
  • Ke He
  • Lauren Joan Brown
  • Zhan Chen
  • Jinhan Cho
  • Dayang Wang
چکیده

Surface wetting on polyelectrolyte multilayers (PEMs), prepared by alternating deposition of polydiallyldimethylammonium chloride (PDDA) and poly(styrene sulfonate) (PSS), was investigated mainly in water-solid-oil systems. The surface-wetting behavior of as-prepared PEMs was well correlated to the molecular structures of the uncompensated ionic groups on the PEMs as revealed by sum frequency generation vibrational and X-ray photoelectron spectroscopies. The orientation change of the benzenesulfonate groups on the PSS-capped surfaces causes poor water wetting in oil or air and negligible oil wetting in water, while the orientation change of the quaternized pyrrolidine rings on the PDDA-capped surfaces hardly affects their wetting behavior. The underwater oil repellency of PSS-capped PEMs was successfully harnessed to manufacture highly efficient filters for oil-water separation at high flux.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multilayers of weak polyelectrolytes of low and high molecular mass assembled on polypropylene and self-assembled hydrophobic surfaces.

Hydrophobic self-assembled octadecyltrichlorosilane (ODTS), ultrathin films of polypropylene, and ODTS modified with cationic dioctadecyldimethylammonium bromide are employed as substrates for deposition of multilayers of poly(allylamine hydrochloride) and poly(acrylic acid) from aqueous solution. The assembly of highly dissipative polyelectrolyte multilayers (PEMs) is demonstrated by quartz cr...

متن کامل

Mechanically durable, superoleophobic coatings prepared by layer-by-layer technique for anti-smudge and oil-water separation

Superoleophobic surfaces are of interest for anti-fouling, self-cleaning, anti-smudge, low-drag, anti-fog, and oil-water separation applications. Current bioinspired surfaces are of limited use due to a lack of mechanical durability. A so-called layer-by-layer approach, involving charged species with electrostatic interactions between layers, can provide the flexibility needed to improve adhesi...

متن کامل

Charge-Dependent Transport Switching of Single Molecular Ions in a Weak Polyelectrolyte Multilayer

The tunable nature of weak polyelectrolyte multilayers makes them ideal candidates for drug loading and delivery, water filtration, and separations, yet the lateral transport of charged molecules in these systems remains largely unexplored at the single molecule level. We report the direct measurement of the charge-dependent, pH-tunable, multimodal interaction of single charged molecules with a...

متن کامل

Molecular dynamics simulations of polyelectrolyte multilayering on a charged particle.

Molecular dynamics simulations of polyelectrolyte multilayering on a charged spherical particle revealed that the sequential adsorption of oppositely charged flexible polyelectrolytes proceeds with surface charge reversal and highlighted electrostatic interactions as the major driving force of layer deposition. Far from being completely immobilized, multilayers feature a constant surge of chain...

متن کامل

Polyelectrolytes in Solution and at Surfaces

This chapter deals with charged polymers (polyelectrolytes) in solution and at surfaces. The behavior of polyelectrolytes is markedly different from that of neutral polymers. In bulk solutions, i.e. disregarding the surface effect, there are two unique features to charged polymers: first, due to the presence of long-ranged electrostatic repulsion between charged monomers, the polymer conformati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Angewandte Chemie

دوره 54 16  شماره 

صفحات  -

تاریخ انتشار 2015